If Control Construct

A mechanism for deciding whether an
action should be taken

JPC and JWD © 2002 McGraw-Hill, Inc.

Boolean Algebra

Logical expressions have the one of two values - true or false
= A rectangle has three sides
= The instructor has a pleasant smile

#® The branch of mathematics is called Boolean algebra

= Developed by the British mathematician George Boole in the
19th century

Three key logical operators
= And
m Or
s Not

Boolean Algebra

Truth tables

= Lists all combinations of operand values and the result of the
operation for each combination

Example

P Q Pand Q
False | False False
False | True False
True False False
True True True

oolean Algebra

QOr truth table

P Q PorQ
False | False False
False | True True
True False True
True True True

oolean Algebra

Not truth table

P not P

False | True
True False

Boolean Algebra

(Can create complex logical expressions by combining simple
logical expressions

Example
= not (P and Q)

A truth table can be used to determine when a logical
expression is true

P Q Pand Q not (P and Q)
False | False False True
False | True False True
True False False True
True True True False

A Boolean Type

C++ contains a type named bool

Type bool has two symbolic constants
m frue
s fal se

Boolean operators
= The and operator is &&
= The or operator is | |
= The not operator is !

Warning
= &and| are also operators so be careful what you type

oolean Type

Example logical expressions

bool
bool
bool
bool
bool
bool

CHmwWXXOT

true;

fal se;

true;
(P && Q;
(('Q [R);
(R && (1Q);

#® Examples

m int I = 32;
m I nt k:45;
m bool g = (1 == k);
m bool r = (1 !'= k);

€lationa

perators

QOrdering operators
m <

>
m >=
R <=

4 Examples
mint |
m int k

bool
bool
bool
bool

nw - O T

12;

(i < 10);
(k > 1);
(i >=Kk);
(k <= 12);

Operator Precedence Revisited

#® Precedence of operators (from highest to lowest)

= Parentheses

= Unary operators

= Multiplicative operators
= Additive operators

= Relational ordering

= Relational equality

= Logical and

= Logical or

= Assignment

!pera !OI‘ !rece!ence !GVISI !E!

#® Consider
5* 15 + 4 == 13 && 12 < 19 || !false == 5 < 24

!perator Prece!ence Revisite!

#® Consider
5* 15 + 4 == 13 && 12 < 19 || !false == 5 < 24

#® Yuck! Do not write expressions like this!

Operator Precedence Revisited

Consider
5 * 15 + 4 == 13 & 12 < 19 || !false == 5 < 24

@ However, flar youwr imfommeitiom iit is equiiva ket to
((((5 *15) + 4) == 13) && (12 < 19))

|
(('false) == (5 < 24))

onditional Constructs

@ Provide
= Ability to control whether a statement list is executed

4 Two constructs

= If statement
* if
+ jf-else
+ if-else-if

m Switch statement
+ Left for reading

The Basic If Statement

Syntax T
| T (Expression)

Action
Expression

® [If the Expression is true then

execute Action
true

false

Action is either a single
statement or a group of Action
statements within braces

Example

i f (Value < 0) {
Val ue = -Val ue;

'/ Is our number negative?

}

If Value is less than

zero then we need to

update its value to

that of its additive \
inverse

true false

\ 4 If Value is not less

than zero then our
Val ue = -Val ue)/ number is fine as is

Our number is
now definitely —p»
nonnegative v

Sorting Two Numbers

cout << "Enter two iIntegers:. ",
I nt Val uel;
I nt Val ue2;
cin >> Val uel >> Val ue?;
| f (Valuel > Val ue2) {
| nt Renenber Val uel = Val uel;
Val uel = Val ue2;
Val ue2 = Renenber Val uel,
}
cout << "The 1 nput In sorted order:
<< Valuel << " " << Value2 << endl;

re € numpers

'/ out of order

val ue2 < val uel

Rearrange valuel
and value2 to

put their values
In the proper

order false
4

I nt renmenber Val uel = val uel
val uel = val ue2
val ue2 = renenber Val uel

The numbers were

rearranged into th

proper order M +
The numbers were
initially in order

The numbers are in
order

Int m= 5;

Int n = 10;
If (m< n)
++m
++nN;

cout << " m="

<< m<<< "

n

''n << endl;

The If-Else Statement

Syntax

i f (Expression)

Action,
el se
Action,

® If Expression is true then execute
Action,; otherwise execute Action,

if (v == 0) {
cout << "v 1s 0";

}

el se {
cout << "v Is not 0";

}

true

Actionl

Lo

false

Action2

inding the Max

cout << "Enter two iIntegers:. ",

I nt Val uel;

I nt Val ue2;

cin >> Val uel >> Val ue?;

| nt Max;

I f (Valuel < Val ue2) {
Max = Val ue2;

}
el se {

Max = Val uel;
}

cout << "Maxi mum of inputs is:

<< Max << endl:

Flnd|ng the MaX Is Value2 larger than Valuel

Yes, itis . So Value?2 is
larger than Valuel. In
this case, Max Is set

to Value2

No, its not. So Value
IS at least as large as
Value2. In this case,
Max Is set to Valuel

false /

Max = Value?2 Max = Valuel

Valuel < Value2

Either case, Max is set ¢ i
correctly

election

[t is often the case that depending upon the value of an
expression we want to perform a particular action

Two major ways of accomplishing this choice

n if-else-if statement
+ if-else statements “glued” together

s Switch statement
+ An advanced construct

N SE- dlteémen

if (nbr <0){

cout << nbr << " is negative" << endl;
}
elseif (nbr >0) {

cout << nbr << " is positive" << endl;
}
el se {

cout << nbr << " is zero" << endl;
}

WITC

tatement

switch (ch) {

cout << ch << "

case 'a
case 'e'
case '1'
case 'O
case ' U
br eak;
defaul t:

case
case
case
case
case

m >

C Q ~—-

cout << ch << "

s a vowel "

s not a vowel "

<< endl ;

<< endl :

cout << "Enter sinple expression: ";
I nt Left;

I nt Right;

char QOperat or;

cin >> Left >> Operator >> R ght;

cout << Left << " " << Qperator << " " << Right

<< " ="

swtch (Operator) {
case '+ © cout << Left + R ght << endl; break;
case '-' : cout << Left - R ght << endl; break;
case '*' : cout << Left * R ght << endl; break;
case '/' : cout << Left / R ght << endl; break;
default: cout << "lllegal operation" << endl;

